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The Merrifield–Simmons index, )(Gi , of a molecular graph G  is important in structural chemistry and defined as the 
number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., the number of independent-vertex sets 
of G . In this paper for calculating Merrifield–Simmons index, we formulate an integer linear programming problem to 
compute the k-independent set of G  and then we solve it by AIMMS software. 
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1. Introduction 
 
A graph is a pair ),( EVG =  of sets such that, the 

elements of V  are the vertices of the graph G and the 
elements of E  are 2-element subset of V . The elements 
of E  are called edges. A simple graph is a graph that does 
not have more than one edge between any two vertices and 
no edge starts and ends at the same vertex. Two vertices 
are adjacent if there is an edge between them. The 
adjacency matrix of a simple graph is a matrix with rows 
and columns labeled by graph vertices, with a 1 or 0 in 
position ),( ji   according to whether vertices iv  and jv  

are adjacent or not. Two vertices of G are said to be 
independent if they are not adjacent in G. 

Topological indices are numerical parameters of a 
graph which characterize its topology and are usually 
graph invariant. Topological indices are used for example 
in the development of quantitative structure-activity 
relationships (QSARs) in which the biological activity or 
other properties of molecules are correlated with their 
chemical structure [1, 2, 3].  

Merrifield-Simmons index is one of the most popular 
topological indices in chemistry, which was extensively 
studied in a monograph [4]. Chemical applications of this 
index were demonstrated. Merrifield and Simmons were 
able to show the correlation between this index and boiling 
points [4]. It was further investigated in various papers. In 
[5], Li et al. gave its other properties and applications. 

Let G  be a graph with n  vertices. A k-independent 
set of G  is a set of k mutually independent vertices. 
Denote by ),( kGi  the number of the k-independent sets 

of G . By definition, the empty vertex set is an 
independent set. Then 1)0,( =Gi , for any graph G . The 

Merrifield-Simmons index of G, denoted by )(Gi , is 
defined by 
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 So )(Gi  is equal to the total number of the 

independent sets of G . 
 The goal of this article is to get a way for calculating 

),( kGi  the finite molecular graphs for different amount 
of k. For this purpose, we formulate an integer linear 
programming problem (ILP) [6] whose number of optimal 
solutions is ),( kGi . An integer programming problem is 
a mathematical optimization problem in which all of the 
variables can take only the integer values. AIMMS 
Software helps us in solving our ILP and 
computing ),( kGi . AIMMS was introduced by Paragon 
Decision Technology as a new type of mathematical 
modeling tool. It is far more than just another 
mathematical modeling language [7].      

 
 
2. Main results and discussion 
 
In this section we show an integer linear programming 

for computing ),( kGi  of finite molecular graph G  for 

different amount of k. In fact, the value of  ),( kGi  is 
obtained by the number of optimal solutions of our ILP. 

Let ),( EVG  be a graph with n  vertices labeled 

with nvv ,,1 K . Assumes that ijc  is the element of its 

adjacency matrix placed in ith row and jth column. The 
problem is to find k-independent set A  of G .  

To transcribe the problem into a formal ILP, let us 
denote the binary decision variables as follows: 
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We should now define the constraints of the problem, 

which are the restrictions imposed upon the values of the 
decision variables by the characteristics of the problem 
under study. First, since we hope that the set A  has k  
elements, we should make the summation of decision 
variables exactly equal to k . i.e. 
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n

i
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                                 (3) 

 
Next, it should be noticed that the elements of A  

mustn’t be adjacent. This restriction can be expressed as 
follows:     

                          
jinicxx ijji <=−≤+ ,,...,1,0,2         (4) 

 
If 1=ijc , we have 1≤+ ji xx . So, either ix  or jx  

can be equal to 1, i.e., A  can include just one of the 
vertices iv and jv . Otherwise, If 0=ijc , we 

have 2≤+ ji xx . Since the decision variables are binary, 
it is obvious that this constraint is always confirmed.  

Now we should find ,ix  ni ,...,1= such that 
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n
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  jinicxx ijji <=−≤+ ,,...,1,0,2 . 
{ }1,0∈ix , ni ,..,1=  

 
For finding the value of njx j ,...,1, = , we convert 

the above problem to an ILP. For this purpose, we add an 
artificial variable R  to the constraint (3). The desired 
constraint will be: 

                   kRx
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An artificial variable is required to be zero for feasible 

solution. 
First, we deal with a “relaxed problem” where the 

artificial variable R   is allowed to be greater than zero. If 
we can make 0=R , the solution will be feasible for the 
original problem. So, our goal is to minimize the amount 
of R . We can determine the objective function for ILP as 
follows:  

RzMinimize = .                                 (6) 
 
 
Then we have the following  ILP  

 
RzMinimize =  

                        Subject to: 
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),(2 jicxx ji −≤+      jiandnifor <= ,,1K      (7) 

 

{ }1,0∈ix                     nifor ,,1 K=  

 

}{ nR ,...,1,0∈ . 
If the above ILP has feasible solutions, then after 

solving it, the amount of R  will become zero. In this case, 
),( kGi will be equal to the number of optimal solutions 

of our ILP. Otherwise, ),( kGi  will be zero.     
We solve our mathematical program by AIMMS 

software. This software is able to find all of the optimal 
solutions of our program.  

 
 
3. Numerical examples 

 
Let us consider the following graphs: 
 

 
                                              
For these graphs, by solving ILP (7), one obtains the 

results shown in Table 1.  
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Table 1. Computing Merrifield–Simmons index for 1G - 6G . 

 
 i(G,0) i(G,1) i(G,2) i(G,3) i(G,4) i(G,5) i(G,6) i(G,7) i(G,8) i(G,9) i(G) 

1G  1 7 14 8 0 0 0 0 0 0 30 

2G  1 14 76 202 273 176 46 4 0 0 792 

3G  1 16 101 322 552 502 223 38 2 0 1757 

4G  1 8 19 15 4 0 0 0 0 0 47 

5G  1 13 66 172 251 214 114 40 9 1 881 

6G  1 10 34 46 21 2 0 0 0 0 114 
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